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DoD HPCMP CREATETM– AV Kestrel

Expanding Footprint of Kestrel Adoption
• Over 500 active license holders (as of May 2017)
• 21 Defense Orgs (Labs, Engineering and Test Centers) actively using Kestrel
• All major manufacturers actively evaluating Kestrel
• 5 Orgs affiliated with Other Federal Agencies using Kestrel to support US Gov’t Programs
• Several select US Academic Institutions and the Service Academies using Kestrel to support DoD Programs 

Kestrel is the fixed-wing product of the 
CREATETM-AV program

– Born from requirements gathered in 2007/8 to 

address modeling & simulation deficiencies in 

the DoD acquisition process

– Multi-mesh/multi-solver paradigm

• Unstructured near-body

• High order Cartesian off-body 

• Adaptive Mesh Refinement

• Fast overset connectivity

– Full spectrum of aircraft type

• Fighter, Bomber, Tanker, Transport, UAV

– Full spectrum of flight conditions/missions

• Low-speed, transonic, supersonic

• Cruise, maneuver, take-off/land, refueling, 

formation flight, store carriage and release, pilot 

ejection, precision air-drop, and more…

Version 7

Key Technologies
• Multi-mesh paradigm
• Adaptive mesh refinement
• High order Cartesian solver
• Python-based common 

software infrastructure
• Generalized interface for 

externally developed “plug-
in” capability modules

Capabilities
High fidelity coupled physics
• Aerodynamics
• Structural Dynamics
• Propulsion
• Flight Control Systems
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Introduction

 Many cost/performance issues in DoD aircraft 

acquisitions may be traced back to inadequate 

modeling of multidisciplinary phenomena

– …or maybe the “operational application” of the physics 

capabilities

 Kestrel:

– Provide a production multidisciplinary capability for DoD 

acquisition personnel

– Plan for the change  “manage the chaos”

– Usability, robustness, efficiency, and accuracy are all 

competing factors



Kestrel Overview
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Kestrel Architecture

 Kestrel User Interface (KUI/Carpenter)

– Pre-processing

 Job setup and validation

 Mesh manipulation

– Post-processing

 Tracking file plotting and manipulation

 Reduced-order model building

 Kestrel Run Time Execution Software

– Common Scalable Infrastructure (CSI)

 Unique event-driven infrastructure

 Homogenous behavior in the infrastructure, physics capability in components

 Data Warehouse – generic data definition and automatic language translation

– Modular Components

 Elemental physics capabilities  large degree of use case flexibility

 Testable code units  may be modified/replaced with confidence

 Written in Python/C/C++/FORTRAN
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Job Setup and Input Validation

 Tension between making the hard job easy to 

set up and making the easy job hard to setup

Entity-driven setup

Automatic unit conversions and reference/freestream property calculations

Jobview:
- Visual validation of complex job setup
- Assembled body positions
- Unit conversions/scaling
- Position-dependent input locations
- Boundary conditions
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Modular Components

 Nothing prohibits use of derived or empirical models

KCFD
Unstructured 
FVM 2nd order 

RANS/DDES

SAMAir
Cartesian

FVM 3rd/5th order 
RANS/DDES

ModalSD
2nd order modal 
structural solver

COFFE
Unstructured 

FEM high-order
RANS

Sierra/SD
FEM structural solver

6DOF
Newton/Euler

- or -
Lagrange (AEDC)

Propulsion
0D Engine 

Models

SDK
???

ROM-Based 
Aero

CG Loads
Distributed Loads

PrescribedMotion
Analytic or arbitrary 
rigid-body motion 

FSI

MeshManager

OutputManager

MeshMove

TimeManager
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Parallelism

 Hierarchy of MPI 

communicators

 Shared memory for 

duplicate data

 1 body per process
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Testing and Validation

 Continuous testing model is vital to Kestrel process

 Boldness and confidence to undertake substantial 

changes to software

 ~3500 unit, ~250 integration, ~25 system tests each 

night (~17k assertions)

 Automatic Testing System executed every 2 weeks and 

covers a large range of use cases and flow regimes 

(~125 separate jobs)



Kestrel Capabilities 
Snapshot
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Flow Solver Performance

ONERA M6
0.84 Mach
5.06° AOA
Baseline Menter
w/ wall functions

Holden Cylinder - Mach 16.01
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Flow Solver Performance

Transonic F-35 @ 14 deg AOA (AIAA 2015-0551)

F-16XL Unsteady Solution 
20° AOA
SA-DDES
M=0.242, 10k ft
(AIAA 2015-2873)

- No special initializations
- Performance and scalability on par
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F-16
0.6 Mach
20k feet
6 deg AOA
F110-100 0D transient
engine model

Propulsion Integration

30° PLA

85° PLA

C1 Compressor
AEDC 16T
8 blade rows
333 blades

A-10 Inlet Distortion 
21° AOA

Full annulus TF34 fan stage
w/ static BC core flow
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Near-body/Off-body Solution Capability

 Off-body Cartesian solver supports high order and 

adaptive mesh refinement

 Near-body unstructured solution coupled via overset

NASA CRM (DPW)
Mach 0.85
CL = 0.5

Eymann & Nichols, Thurs @ 1400 in Tower Court B, 336-CFD-30 (AIAA 2017-4292)
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Multi-body Elastic Effects
Notional Sidewinder Release from Elastic F-16

Mach 0.9, Sea Level, SA+DDES
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Multi-body Elastic Effects
Notional Sidewinder Ejection from Elastic F-16

Mach 0.9, Sea Level, SA+DDES



Challenges and Future 
Directions
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Challenges and Future Directions

 Kestrel  robust and maintainable simulation capability 

must be balanced with accuracy requirements

 Productionizing high-fidelity physics capabilities while…

– Minimizing code complexity (small code base)

– Adapting to future algorithm advancements

– Adapting to future hardware changes

– Supporting proprietary / custom applications

 Mention of ongoing Kestrel development activities in the 

context of these next topics should not be construed as 

the ideal end-state solution
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Multiple Everything

 Necessary to model multiple disciplines at multiple time 

scales to capture target physics

 Flow regimes of interest moving to opposite ends of the 

speed spectrum

– UAV  incompressible, highly-flexible

– Hypersonics  transition, chemistry, heating

 Unsteady, time-accurate simulations

– Example:   Full-annulus multistage compressor

 Billions of grid points required for 0.5% mass flow, 2% total property convergence

 Time step restricted by rotation rate (on the order of 104 RPM)

 Pressure waves must transit the distance between inflow/outflow several times

 Throttle transients and aircraft maneuvers have time scales of seconds

 Multiple gas species and chemistry effects

– Efficient perfect gas vs. multiple reacting species and inflow specifications

– Support for custom thermodynamics/chemistry models
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Mesh Generation and Refinement

 Need for effective automatic meshing process for 

general configurations

– 1st Geometry and Mesh Generation Workshop at AVIATION 2017

 Solver-independent strand mesh approach

 Standardized methods for determining when and 

where adaptive mesh refinement should occur

 Access to underlying geometry for constrained 

surface mesh movement  (CREATE Capstone SDK)
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High-Order (Unstructured) Solutions

 Some use cases are out of reach of 2nd order solvers

– Scalability/memory restricts continued refinement of the mesh

– Numerical dissipation prevents needed level of solution convergence

 High-order overset can be problematic

 Mesh generation/visualization (tools AND training)

 Kestrel/COFFE

– SU/PG FEM, strong convergence, path to high-order, adjoint consistent

P2 solution for NASA CRMVerification of order of accuracy 
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(High Lift) Turbulence & Transition

 Accurate solutions near/beyond stall are necessary

– New high-performance aircraft being designed to operate close to stall

– Turbomachinery blades typically operate near stall

 Transition modeling is key in production environment

– Transport-equation-type models are a necessity

– Requirement in hypersonic flows

JAXA Standard Model, Mach 0.172
3rd AIAA Hi-Lift Prediction Workshop (AVIATION 2017)
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Solution Parallelism

 Shared memory compute architectures are dominating

– Knights Landing processors entering production in DoD HPCMP this summer

 Coarse-grain, hybrid parallelization approaches critical to 

future scalability

 Kestrel shared memory requirements

– Low overhead with minimal code complexity (maximum portability)

– Compatible with persistent data accessible across multiple languages

 Potential cache issues with large mesh partitions

 Look at other parallelism avenues (time, discipline, etc.)
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Solution Parallelism

“Index distance to neighbor cell”

“C
el

l i
n

d
ex

 in
 m

es
h

 p
ar

ti
ti

o
n

”

NACA 0012 on 32 processors
Ghost elements packed at end

Blue = physical cell
Red = partition boundary ghost cell
Green = physical boundary ghost cell

Fine-grain Partitioning Coarse-grain Partitioning



27

Reduced-Order Modeling

 Effective use of ROMs necessary for disruptive  

impact to acquisition programs

Automated Maneuver Generation
to Minimize Parameter Correlation

CFD Model

ROM Used For Integrated/Distributed Aero
Predictions at Off-Design Conditions

𝑞 𝑥, 𝑡 = 𝑎𝑛 𝑡 𝜙𝑛(𝑥)

ROM Constructed Using On-Design Data

POD-Based (Distributed Loads):

Polyomial (Integrated Loads):

𝐶𝐿 = 𝑓(𝛼, 𝛽, 𝑝, 𝑞, 𝑟, … )

Morton and McDaniel, Thurs @ 1630 in Silver, 325-APA-41 (AIAA 2017-4237)
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Summary and Final Thoughts

 Kestrel is a production-quality multidisciplinary 

simulation tool for fixed-wing air vehicles targeting DoD 

acquisition professionals

 Kestrel development team must consider usability, 

robustness, maintainability alongside accuracy

 Three more challenges:

1. Which models/approaches/techniques do we invest in?

2. Symbology, coordinate systems, reference frames, etc., 

across different disciplines creates confusion

3. Lack of multidisciplinary validation data is debilitating 

for adoption of multidisciplinary tools
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